

The proof of the Lemma We follow the line of the proof in Resnik's book We present the main steps of the proof here for the case $k = \ell = 1$. It is a homework to fill the gaps.

Step 1. Let $K, L \in \mathcal{R}$ (that is K, L are Borel subsets of \mathbb{R}). Let $\phi := \mathbb{1}_J$ where $J = K \times L$. Then we say that J is a measurable rectangle.

 $\mathbb{E}\left[\phi(\mathsf{X},\mathsf{Y})|\mathcal{G}\right] = \mathbb{P}\left(X \in K, Y \in L|\mathcal{G}\right)$ $= \mathbb{1}\{X \in K\}\mathbb{P}(Y \in L|\mathcal{G})$ $= \mathbb{1}\{X \in K\}\mathbb{P}(Y \in L) = f_{\mathbb{I}_{K \times I}}(X).$

Independence Lemma (cont.)

(c) If $A_n \in C$ and A_n are disjoint then $\bigcup A_n \in C$. We do not prove (c) here. By definition, (a), (b) and (c) implies that

- C is a λ -system and
- $\mathcal{C} \supset \text{RECTS}$.

Using that RECTS is a π -system it follows from File "Some basic facts from probability theory" Theorem ?? that

Markov Processes & Martingales

(3)

 $\mathcal{C} \supset \sigma(\text{RECTS}) = \mathcal{R}^2.$

Step 2. We write RECTS for the family of measurable rectangles (like J above). Let

$$\mathcal{C} := \{J \in \mathcal{R}^2 : (2) \text{ holds for } \phi = \mathbb{1}_J \}$$

Then $\text{RECTS} \subset C$. Now we verify that C is a λ -system. (To recall the definition, see the File "Some basic facts from probability theory" Definition ??.) That is

- (a) $\mathbb{R}^2 \in \mathcal{C}$. This holds because $\mathbb{R}^2 \in \text{RECTS}$.
- (b) $J \in \mathcal{C}$ implies $J^c \in \mathcal{C}$. This is so because
 - $\mathbb{P}\left((X,Y)\in J^{c}|\mathcal{G}\right)=1-\mathbb{P}\left((X,Y)\in J|\mathcal{G}\right)$ $1-f_{\mathbb{1}_J}(X)=f_{\mathbb{1}_{J^c}}(X).$

B File 8 / 68

B File 2 / 68

Independence Lemma (cont.)

So, we have indicated that (2) holds when ϕ is an indicator function of Borel subsets of the plane. **Step 3**. We could prove that (2) also holds when ϕ is a simple function. We say that a Borel function ϕ is a simple function if its range is finite. That is if there exist a k and a partition J_1, \ldots, J_k of \mathbb{R}^2 , $J_k \in \mathcal{R}$ and real numbers c_1, \ldots, c_k such that

Markov Processes & Martingales

(4)
$$\phi = \sum_{i=1}^{k} c_i \mathbb{1}_{J_i}$$

Independence Lemma (cont.)

Step 4. Then we represent $\phi = \phi^+ - \phi^-$ and we can find sequences of simple functions $\{\phi_n^+\}$ and $\{\phi_n^-\}$ such that

 $\phi_n^+ \uparrow \phi^+$ and $\phi_n^- \uparrow \phi^-$.

Then using Conditional Monotone Convergence Theorem (see File "Some basic facts from probability theory" slide #??) we conclude the proof.

B File 9 / 68

Monotone Class Theorem cont.

Theorem 1.3 (Monotone Class Theorem cont)

and

(c) If $f_n \in \mathcal{H}$ satisfying

•
$$f_n \geq 0$$

• $f_n \uparrow f$ then $f \in \mathcal{H}$.

The \mathcal{H} contains all bounded functions measurable w.r.t. $\sigma(\mathcal{A})$.

Review

Given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} and $A \in \mathcal{F}$. According to the definition of the conditional probability w.r.t. sub- σ -algebra:

(5) $\mathbb{P}(A|\mathcal{G}) := \mathbb{E}[\mathbb{1}_A|\mathcal{G}].$

This is not a probability in the worst case but it is a probability (for almost all ω) under mild assumptions. Our aim here is to get a better understanding of this notion. We start with a very easy example from Billingley's book.

Markov Processes & Martingales

Review cont.

Károly Simon (TU Budapest)

Example 2.2 (Example cont.) It is immediate that

(6)
$$\mathbb{P}(A|B_i) = \frac{\mathbb{P}(N(s)=0) \cdot \mathbb{P}(N(t)-N(s)=i)}{\mathbb{P}(N(t)=i)} = \left(1-\frac{s}{t}\right)^i.$$

Markov Processes & Martingales

B File

15 / 68

Then the random variable

(7)
$$\mathbb{P}(N(s) = 0|\mathcal{G}) = \left(1 - \frac{s}{t}\right)^{N(t)}$$

Monotone Class Theorem

We could have used in the previous proof the so called Monotone Class Theorem (for the proof see [6, p. 235])

Theorem 1.2 (Monotone Class Theorem)

Let \mathcal{A} be a π -system with $\Omega \in \mathcal{A}$ and let \mathcal{H} be a family of real valued function defined on Ω with the following three properties:

(a) $\mathbb{1}_{A} \in \mathcal{H}$ whenever $A \in \mathcal{A}$. (b) $f, g \in \mathcal{H} \Longrightarrow f + g \in \mathcal{H}$ further, $\forall c \in \mathbb{R}$: $c \cdot f \in \mathcal{H}$

Markov Processes & Martingales B File 10 / 68

One way to compute conditional expectation

2 Conditional probability in w.r.t. a σ -algebra (simple situation)

- 3 Regular conditional Distribution
- Review of Multivariate Normal Distribution
 The bivariate Case
 - Conditioning normal r.v. on their components

Markov Processes & Martingales

Review cont

Example 2.1

Consider a Poisson process $N(t) \sim \text{Poisson}(\lambda)$ which is, say the number of telephone calls to a call center during time interval [0, t].

(Remember: this means that the number of calls until time t_0 has distribution $\operatorname{Poi}(\lambda \cdot t_0)$.) Fix 0 < s < t. $A := \{N(s) = 0\}$ and $B_i := \{N(t) = 0\}$, $i = 0, 1, 2, \ldots$. Then $\{B_i\}_{i=0}^{\infty}$ is a partition of Ω . So, it generates a σ -algebra which we call \mathcal{G} .

Markov Processes & Martingale

Review cont.

This is so, because we learned that in general

Lemma 2.3

Let $\Omega_1, \Omega_2, \ldots$ be a partition of Ω and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. Then

(8)
$$\mathbb{E}[X|\mathcal{G}](\omega) = \frac{\mathbb{E}[X;\Omega_i](\omega)}{\mathbb{P}(\Omega_i)}$$

If we apply Lemma 2.3 with $X = \mathbb{1}_A$:

(9)
$$\mathbb{P}(A|\mathcal{G})(\omega) = \mathbb{P}(A|\Omega_i) \text{ if } \omega \in \Omega_i.$$

Markov Processes & Martingales

B File 16 / 68

say that μ is a regular conditional probability .

B File 23 / 68

on (TU Budapest) Markov Processes & Martingales

B File 24 / 68

Markov Processes & Martingales

R.C.D. (cont.)

Theorem 3.3

Let $\mu(\omega, A)$ be a r.c.d. for X given \mathcal{F} and let $f: (S, \mathcal{S}) \to (\mathbb{R}, \mathcal{R})$ be measurable. (This means that $f: S \to \mathbb{R}$ and for every Borel set $B \in \mathcal{R}$ we have $f^{-1}(B) \in \mathcal{S}$.) Further, we assume that $\mathbb{E}\left[|f(X)|\right] < \infty$. Then

(12) $\mathbb{E}[f(X)|\mathcal{F}] = \int f(x) \cdot \mu(\omega, dx).$

We say that a space is nice if there is an injective map $\varphi: S \to \mathbb{R}$ such that both φ and φ^{-1} are measurable.

Markov Processes & Martingales

B File 25 / 68

B File 29 / 68

B File 31 / 68

Proof of Theorem. 3.5 for $S = \mathbb{R}$ First we assume that $(S, S) = (\mathbb{R}, \mathcal{R})$. For a rational number $q \in \mathbb{Q}$ we define the r.v.

 $P^{q}(\omega) := \mathbb{P}\left(X \leq q | \mathcal{G}\right)(\omega).$

By throwing away countably many null sets we may suppose that

(13) $P^{q}(\omega) \leq P^{r}(\omega), \quad \forall q \leq r, \ q, r \in \mathbb{Q} \text{ and } \forall \omega$

and

$$0 = \lim_{q o -\infty} P^q(\omega), \quad \lim_{q o \infty} P^q(\omega) = 1, \quad orall \omega.$$

Markov Processes & Martingales B File

Proof of Theorem. 3.5 for $S = \mathbb{R}$ cont. Combining the first comment on the previous slide with

Theorem **??** from File "Some basic facts form probability" we obtain that for

(15) $\forall \omega, \exists$ a probability measure $\mu_{X|\mathcal{G}}(\omega, \bullet)$.

satisfying

(16)
$$\mu_{X|\mathcal{G}}(\omega, (-\infty, x]) = F(\omega, x), \quad \forall \omega, \forall x$$

Proof of Theorem. 3.5 cont.

Assuming that (α) and (β) hold the proof of Theorem 3.5 is complete in the case of $(S, S) = (\mathbb{R}, \mathcal{R})$. Namely, using (α) and (β) , it follows from Theorem **??** from File "Some basic facts form probability" that $\mathcal{R} \subset \mathcal{L}$. Part (a) of Definition 3.1 will be verified by this. Part (b) is immediate from (15).

Markov Processes & Martingales

Markov Processes & Martingales

R.C.D. (cont.)

Theorem 3.4

Let S be a complete separable metric space and S be the Borel sets on S. Then (S, S) is nice.

Theorem 3.5

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} Further, let (S, \mathcal{S}) be a measurable space which is nice. Then any S-valued r.v. X admits a regular conditional distribution given \mathcal{G} .

Markov Processes & Martingales B File 26 / 68

The proof follows [13, Proposition 7.14].

Proof of Theorem. 3.5 for $S = \mathbb{R}$ cont. For an $x \in \mathbb{R}$ let

(14) $F(\omega, x) := \lim_{q \in \mathbb{Q}, q > x} P^{q}(\omega).$

Fix an arbitrary ω . Then $\forall \omega$ the function $x \mapsto F(\omega, x)$:

- is right continuous,
- non-decreasing,
- $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.

Fix an arbitrary x. Then $\omega \mapsto F(\omega, x)$ is r.v. that is measurable (as an infimum of measurable functions).

Markov Processes & Martingales

Proof of Theorem. 3.5 for $S = \mathbb{R}$ cont. Now we write \mathcal{L} for the family of all Borel sets $B \in \mathcal{R}$ satisfying the following two conditions: (i) $\omega \mapsto \mu_{X|\mathcal{G}}(\omega, B)$ is a r.v.. (ii) $\mu_{X|\mathcal{G}}(\omega, B)$ is a version of $\mathbb{P}(X \in B|\mathcal{G})(\omega)$. Now the strategy is as follows: (α) It is not hard to prove that \mathcal{L} is λ -system (we omit this proof). (β) We prove that \mathcal{L} contains a π -system \mathcal{P} such that $\mathcal{R} = \sigma(\mathcal{P})$. Markov Processes & Martingales B File 30 / 6 Proof of Theorem. 3.5 for $S = \mathbb{R}$ cont. To complete part (α) on the previous slide: a convenient π -system is $\mathcal{P} := \{(-\infty, x] : x \in \mathbb{R}\}.$ (i) holds: $mu_{X|G}(\omega, B) = F(\omega, x)$ by definition and then we use the second comment on slide #28.

(ii) holds: We need to verify that

(17)
$$F(\omega, x) = \mathbb{P}(X \le x | \mathcal{G})(\omega).$$

Budapest) Markov Processes & Martingales

Recall that F was defined in (14).

Proof of Theorem. 3.5 for
$$S = \mathbb{R}^{2}$$
 cont.(17) follows from: $F(\omega, X) = \inf_{M} P^{1}(\omega) = \inf_{M} P^{1}(\omega)$ $= \inf_{M} P^{1}(X \leq \eta(G)(\omega) = \mathbb{P}(X \leq \eta(G)(\omega), \text{ for a.s. } \omega$ In the last step we used the Doninated Convergence
Theorem. The vertice poor of the Theorem in the case when $(S, S) = (X, R).$ Proof of Theorem. 3.5 in the general case $(S, S) = (X, R).$ $(S, S) = (X, R).$ Proof of Theorem. 3.5 in the general case cont.
Now we can define the r.c.d for X:
 $we_0(\omega, B) = m_{V(0)}(\omega, R(B)).$ Then it is not hard to prove that $p_{V(0)}(\omega, B)$ satisfies the
conditional (a) of Definition 3.1.Proof of Theorem. 3.5 fin the general case cont.
Now we can define the r.c.d for X:
 $we_0(\omega, B) = m_{V(0)}(\omega, R(B)).$ Then it is not hard to prove that $p_{V(0)}(\omega, B)$ satisfies the
conditional (a) of Definition 3.1.Definition 3.7
 $f_{V_{C1}: O \times W}^{-1} = (0, \infty)$ is the conditional density
function of X given gf.
 $\omega \mapsto f_{V(0)}(\omega, x)$ is forme ansaurable,
 $\omega \mapsto f_{V(0)}(\omega, x)$ is forme ansaurable for every $x \in \mathbb{R}^{n}$,
 $\omega \models f_{V(0)}(\omega, x)$ is forme ansaurable,
 $\omega \mapsto f_{V(0)}(\omega, x)$ is forme ansaurable for every $x \in \mathbb{R}^{n}$.Conditional Characteristic Function cont.Definition 3.7
 $f_{V_{C1}: O \times W} = f_{V(0)}(\omega, x)$ is forme ansaurable,
 $\omega \mapsto f_{V(0)}(\omega, x)$ is forme ansaurable,
 $\omega \models f_{V(0)}(\omega, x)$ is formeansaurable,
 $\omega \models f_{V($

Proof of Theorem 3.9 (**a**) \Rightarrow (**b**) cont holds for all \mathcal{G} -measurable bounded Y and $\mathbf{t} \in \mathbb{R}^n$. So, (18) holds for all r.v.

 $Y = e^{i\mathbf{s}\cdot Z}$

where Z is any \mathcal{G} -measurable \mathbb{R}^n -valued r.v. and $\mathbf{s} \in \mathbb{R}^n$. So from (18)

 $\mathbb{E}\left[e^{i\mathbf{t}\cdot\mathbf{X}+i\mathbf{s}\cdot\mathbf{Z}}\right] = \mathbb{E}\left[e^{i\mathbf{t}\mathbf{X}}\right]\cdot\mathbb{E}\left[e^{i\mathbf{s}\mathbf{Z}}\right], \quad \forall \mathbf{s}, \mathbf{t} \in \mathbb{R}^{n}.$

Using this and the assertion of Homework # ?? we get that X and Z are independent.

Markov Processes & Martingales B File 41 / 68

B File 43 / 68

B File 45 / 68

B File 47 / 68

The continuous case

Theorem 3.10

On the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ we are give a random vector

$$\mathbf{Z} = (\underbrace{X_1, \ldots, X_k}_{\mathbf{X}}, \underbrace{Y_1, \ldots, Y_\ell}_{\mathbf{Y}}) = (\mathbf{X}, \mathbf{Y}).$$

We assume that **Z** admits a density $f_{\mathbf{Z}} : \mathbb{R}^{k+\ell} \to [0, \infty)$. Let $\mathcal{G} := \sigma(\mathbf{Y})$. Then there exists a conditional density

 $f_{\mathbf{X}|\mathcal{G}}: \mathbb{R}^k \to [0,\infty)$ of \mathbf{X} given \mathcal{G} by the formula:

The continuous case cont.

proof

We have to check that for all $A \in \mathcal{R}^k$,

 $\int_{A} f_{\mathbf{X}|\mathcal{G}}(\omega, \mathbf{x}) d\mu_{\mathbf{X}|\mathcal{G}}(\omega, \mathbf{x})$

is a version of $\mathbb{P}(\mathbf{X} \in A|\mathcal{G})(\omega)$. This follows if (20)

 $\mathbb{E}\left|\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot\int_{A}f_{\mathbf{X}|\mathcal{G}}(\omega,\mathbf{x})d\mathbf{x}\right|=\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot\mathbb{1}_{\mathbf{X}\in A}(\omega)\right],$

holds for $\forall A \in \mathcal{R}^k$ and $B \in \mathcal{R}^\ell$. We verify this:

The continuous case cont.

Károly Simon (TU Budapest) Markov Processes & Martingales

proof cont. So. $\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot\int_{A}f_{\mathbf{X}|\mathcal{G}}(\omega,\mathbf{x})d\mathbf{x}\right]$ $=\int_{A}\int_{B}f_{\mathbf{Z}}(x,y)d\mathbf{y}d\mathbf{x}$ $(y)d\mathbf{y}d\mathbf{x}$ = $\mathbb{P}\left(X\in A; Y\in B.
ight)$

Markov Processes & Martingales

Proof of Theorem 3.9 (**a**) \Rightarrow (**b**) cont On the other hand, this implies that X and \mathcal{G} are independent since Z was an arbitrary G-measurable r.v..

Proof of Theorem 3.9 cont (**b**) \Rightarrow (**a**)

This is immediate from the "irrelevance of independent information" property of the conditional expectation.

Markov Processes & Martingales B File 42 / 68

The continuous case cont.

Theorem 3.10 cont.
(19)

$$f_{\mathbf{X}|\mathcal{G}}(\omega, \mathbf{x}) = \begin{cases} \frac{f_{\mathbf{Z}}(\mathbf{x}, \mathbf{Y}(\omega))}{\int f_{\mathbf{Z}}(\mathbf{x}, \mathbf{Y}(\omega))d\mathbf{x}}, & \text{if } \int_{\mathbb{R}^{\ell}} f(\mathbf{x}, \mathbf{Y}(\omega))d\mathbf{x} > 0; \\ f_{0}(\mathbf{x}), & \text{otherwise,} \end{cases}$$
where $f_{0} : \mathbb{R}^{k} \to [0, \infty)$ is an arbitrary density function.

The continuous case cont.

proof cont.

$$\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot\int_{A}f_{\mathbf{X}|\mathcal{G}}(\omega,\mathbf{x})d\mathbf{x}\right]$$
$$=\int_{A}\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot f_{\mathbf{X}|\mathcal{G}}(\omega,\mathbf{x})\right]d\mathbf{x}$$

Observe that by definition of $f_{\mathbf{X}|\mathcal{G}}(\omega, \mathbf{x})$ and change of variables formula:

$$\mathbb{E}\left[\mathbb{1}_{\mathbf{Y}\in B}(\omega)\cdot f_{\mathbf{X}|\mathcal{G}}(\omega,\mathbf{x})\right] = \int_{B} f_{\mathbf{Z}}(x,y)d\mathbf{y}.$$

B File

B File 48 / 68

Markov Processes & Martingale

One way to compute conditional expectation

2 Conditional probability in w.r.t. a σ -algebra (simple

- Review of Multivariate Normal Distribution The bivariate Case
 - Conditioning normal r.v. on their components

Markov Processes & Martingales

Definition 4.1 (Normal distribution (on \mathbb{R}))

Let $\mu \in \mathbb{R}$ and $\sigma > 0$. Random variable The r.v. X has normal (or Gaussian) distribution with parameters (μ, σ^2) , if its density function:

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Then we write $X \sim \mathcal{N}(\mu, \sigma^2)$. If $\mu = 0$ and $\sigma = 1$, then we get the standard normal distribution $\mathcal{N}(0, 1)$. Let us use the following notation:

(21)
$$\varphi(x) := \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}, \quad \Phi(x) := \int_{-\infty}^{x} \varphi(y) dy.$$

B File 49 / 68

Multivariate normal distribution

Definition 4.2

A random vector $\mathbf{X} \in \mathbb{R}^d$ is non-degenerate multivariate normal or jointly Gaussian , if the density function $f(\mathbf{x})$ of \mathbf{X}

(24)
$$f(\mathbf{x}) = \frac{\sqrt{\det(A)}}{(2\pi)^{d/2}} \cdot e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \cdot A \cdot (\mathbf{x}-\boldsymbol{\mu})}, \quad \mathbf{x} \in \mathbb{R}^{d},$$

 $f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \cdot \det(\Sigma)}} \cdot e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \cdot \Sigma^{-1} \cdot (\mathbf{x}-\boldsymbol{\mu})}, \quad \mathbf{x} \in \mathbb{R}^d,$

or (25)

Multivariate normal distribution cont.

Definition 4.3

Let **X** be as above. Let $\lambda_1, \ldots, \lambda_d$ be the eigenvalues of A, and $\mathbf{v}_1, \ldots, \mathbf{v}_d$ be the ortonormal basis of \mathbb{R}^d with the appropriate eigenvectors. Let us define diagonal matrix

 $D := \operatorname{diag}(\lambda_1, \ldots, \lambda_d).$

We define the orthogonal $d \times d$ matrix $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_d \end{bmatrix}$ from the eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_d$ as column vectors.

Markov Processes & Martingales

Converse of the previous lemma

Lemma 4.5 Let **Y** be a standard multivariate normal vector in \mathbb{R}^n . Let B be a non-singular $d \times d$ matrix and $\mu \in \mathbb{R}^n$. Let

$$\mathbf{X} := B \cdot \mathbf{Y} + \boldsymbol{\mu}$$

Markov Processes & Martingales

Then $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, A \cdot A^{\mathsf{T}})$.

Some properties

$$X \sim \mathcal{N}(\mu, \sigma^{2}) \text{ and } X_{i} \sim \mathcal{N}(\mu_{i}, \sigma_{i}^{2}), i = 1, 2. \text{ Then}$$
(a) $\mathbb{E}[X] = \mu, \operatorname{Var}(X) = \sigma^{2}.$
(b) $F_{X}(x) = \mathbb{P}(X \leq x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$
(c) $X_{1} + X_{2} = \mathcal{N}(\mu_{1} + \mu_{2}, \sigma_{1}^{2} + \sigma_{2}^{2}).$
(d) $X \sim \mathcal{N}(0, 1), \text{ then}$
(22)
$$\frac{1}{\sqrt{2\pi}} \cdot (x^{-1} - x^{-3}) \cdot e^{-x^{2}/2} \leq \mathbb{P}(X \geq x) \leq \frac{1}{\sqrt{2\pi}} \cdot x^{-1} \cdot e^{-x^{2}/2}$$

(e) Fix a $p \in (0,1)$. Let $Y_n \sim Bin(n,p)$, a < b, then

23)
$$\lim_{n\to\infty} \mathbb{P}\left(a < \frac{Y_n - np}{\sqrt{np(1-p)}} < b\right) = \Phi(b) - \Phi(a).$$

B File 50 / 68

Multivariate normal distribution cont.

where A and μ and Σ satisfy:

- A is a $d \times d$ matrix which is • symmetric and • positive definit. Further, • $\mu \in \mathbb{R}^d$ is a fixed vector The meaning of matrix A is as follows: $(A^{-1})_{ij} = Cov(X_i, X_j) = \mathbb{E} [(X_i - \mathbb{E} [X_i]) \cdot (X_j - \mathbb{E} [X_j]],$ where $\mathbf{X} = (X_1, \dots, X_d)$. The $d \times d$ matrix $\mathbf{\Sigma} = A^{-1}$ with $\mathbf{\Sigma}_{ij} := Cov(X_i, X_j)$
 - is called covariance matrix . We write $X \sim \mathcal{N}(\mu, \Sigma)$ Karoly Simon (TU Budapest) Markov Processes & Martingales B File

Multivariate normal distribution cont.

Lemma 4.4 Let X be as above. Then

26)
$$\mathbf{X} = P \cdot D^{-1/2} \cdot (Y_1, \ldots, Y_d) + \boldsymbol{\mu},$$

where $Y_i \sim \mathcal{N}(0, 1), i = 1, ..., d$ and they are independent. In this case we call **Y** standard multivariate normal vector.

That is the random vector \mathbf{Y} is presented as the affine transform of independent standard normal r.v.. See [1, chapters 6 and 7].

Markov Processes & Martingales

An equivalent definition

Lemma 4.6

55 / 68

(TU Budapest)

The random vector $\mathbf{X} = (X_1, \dots, X_n) \in \mathbb{R}^n$ has a multivariate normal distribution if for all $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ the following holds:

 $a_1X_1 + \cdots + a_nX_n$ has univariate normal distribution.

Markov Processes & Martingales

The proof are available in [3]

The bivariate Case

Assume that $\mathbf{Z} = (X, Y)$ has a bivariate normal distribution. Let

$$\mu_x, \ \mu_Y, \ \sigma_X, \ \sigma_Y$$

be the expectation and standard deviation of X and Y respectively. Further, recall the definitions of covariance and correlation:

$$\operatorname{cov}(X, Y) := \mathbb{E}\left[(X - \mu_X)(Y - \mu_Y)\right]$$

Markov Processes & Martingales

B File 57 / 68

The bivariate Case cont.

Let

$$\frac{Q(x,y)}{1-\rho^2} := \frac{1}{1-\rho^2} \left(\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X \sigma_Y} \right)$$

So, the density is

$$f_{\mathsf{Z}}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}\exp\left(-\frac{1}{2}Q(x,y)\right).$$

Uncorrelated \Rightarrow independent for Gussian

Theorem 4.7

Let $\mathbf{X} = (X_1, \dots, X_n)$ be multivariate normal vector. Assume that $Cov(X_i, X_j) = 0$ for all $i \neq j$. Then X_1, \dots, X_n are independent.

CF and MGF

Theorem 4.9 Let $X \sim \mathcal{N}(\mu, \Sigma)$. Then The characteristic function is

(28)
$$\varphi_{\mathbf{X}}(\mathbf{t}) := \mathbb{E}\left[\exp(i\mathbf{t}^T \cdot \mathbf{X})\right]$$

Károly Simon (TU Budapest) Markov Processes & Martingales

 $= \exp\left(i\boldsymbol{\mu}^{T}\mathbf{t} - \frac{1}{2}\mathbf{t}^{T}\boldsymbol{\Sigma}\mathbf{t}\right)$

The moment generating function is

(29) $M_{\mathbf{X}}(\mathbf{t}) := \mathbb{E}\left[\exp(\mathbf{t}^T \cdot \mathbf{X})\right]$ = $\exp\left(i\boldsymbol{\mu}^T \cdot \mathbf{t} - \frac{1}{2}\mathbf{t}^T \boldsymbol{\Sigma} \mathbf{t}\right).$

Markov Processes & Martingales

The bivariate Case cont.

The correlation of (X, Y) is:

(27)
$$\rho := \rho_{X,Y} := \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma(X)\sigma(Y)}$$
$$= \frac{\mathbb{E}\left[(X - \mu_X)\left[(Y - \mu_Y)\right]\right]}{\sigma(X)\sigma(Y)}$$

The mean vector and the variance-covariance matrix is:

$$\boldsymbol{\mu} := \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix}.$$

Markov Processes & Martingales B File 58 / 68

The bivariate Case cont.

Consider the marginal densities:

$$f_X := \frac{1}{\sigma_X \cdot \sqrt{2\pi}} \cdot \mathrm{e}^{-\frac{(x-\mu_X)^2}{2\sigma^2}} \text{ and } f_Y := \frac{1}{\sigma_Y \cdot \sqrt{2\pi}} \cdot \mathrm{e}^{-\frac{(y-\mu_Y)^2}{2\sigma_Y^2}}.$$

Observe that whenever X and Y are uncorrelated, that is $\rho=\mathbf{0}$ then

$$f_{\mathbf{Z}} = f_X \cdot f_Y.$$

This means that X and Y are independent. In a similar way one can prove the same in higher dimension:

Multivariate normal distribution cont.

A more general theorem in this direction is:

Theorem 4.8

Let $\mathbf{X} = (X_1, \dots, X_n)$ be random vector such that the marginal distributions (the distributions of the component vectors X_i) are

- normal and
- independent
- Then X has a multivariate normal distribution.

Markov Processes & Martingales

Conditioning normals

Given the multivariate normal vector

$$\mathbf{Z} = (\underbrace{X_1, \ldots, X_k}_{\mathbf{X}}, \underbrace{Y_1, \ldots, Y_\ell}_{\mathbf{Y}}) = (\mathbf{X}, \mathbf{Y}).$$

with mean μ and variance-covariance matrix Σ :

on (TU Budapest) Markov Processes & Martingales

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \boldsymbol{\Sigma} = \mathbb{E} \begin{bmatrix} \tilde{\mathbf{Z}} \cdot \tilde{\mathbf{Z}}^T \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Sigma}_{XX} & \boldsymbol{\Sigma}_{XY} \\ \boldsymbol{\Sigma}_{YX} & \boldsymbol{\Sigma}_{YY} \end{bmatrix},$$

where $\widetilde{\mathbf{Z}} := \mathbf{Z} - \boldsymbol{\mu}$ and for $\widetilde{\mathbf{X}} := \mathbf{X} - \boldsymbol{\mu}_X$, $\widetilde{\mathbf{Y}} := \mathbf{Y} - \boldsymbol{\mu}_Y$ $\Sigma_{XX} = \mathbb{E} \left[\widetilde{\mathbf{X}} \cdot \widetilde{\mathbf{X}}^T \right] \qquad \Sigma_{XY} = \mathbb{E} \left[\widetilde{\mathbf{X}} \cdot \widetilde{\mathbf{Y}}^T \right]$

 $\Sigma_{YX} = \mathbb{E}\left[\widetilde{\mathbf{Y}} \cdot \widetilde{\mathbf{X}}^{T}\right] \qquad \Sigma_{YY} = \mathbb{E}\left[\widetilde{\mathbf{Y}} \cdot \widetilde{\mathbf{Y}}^{T}\right]$

B File 64 / 68

Conditioning normals cont.

We may assume that Σ_{YY} is invertible. (Why?) Then for $A := \Sigma_{XY} \cdot \Sigma_{YY}^{-1}$ we have (simply by definitions) that

(30)
$$\mathbb{E}\left[\left(\widetilde{\mathbf{X}}-A\widetilde{\mathbf{Y}}\right)\cdot\widetilde{\mathbf{Y}^{\intercal}}\right]=0.$$

By Theorem 4.7 this implies that $\widetilde{\mathbf{X}} - A\widetilde{\mathbf{Y}}$ and $\widetilde{\mathbf{Y}}$ are independent. By Theorem 3.9 we have that the characteristic function of $\widetilde{\mathbf{X}} - A\widetilde{\mathbf{Y}}$ given $\mathcal{G} = \sigma(\mathbf{Y})$ is **deterministic** and is equal to (for every ω):

$$\varphi_{\widetilde{\mathbf{X}}-A\widetilde{\mathbf{Y}}}(\mathbf{t}) = \mathbb{E}\left[e^{i\mathbf{t}(\widetilde{\mathbf{X}}-A\widetilde{\mathbf{Y}})}|\mathcal{G}\right], \quad \forall \mathbf{t} \in \mathbb{R}^k.$$

Since $A\widetilde{\mathbf{Y}}$ is \mathcal{G} -measurable, we can pull out what is known and use (4.9):

 Károly Simon (TU Budapest)
 Markov Processes & Martingales
 B File
 65 / 68
 [1] MŔTON BALÁZS, BÁLINT TÓTH Lecture notes: Introductory probability (in Hungarian) Click here. P. BILLINGSLEY Probability and measure Wiley, 1995 [2] M. BOLLA, A. KÁMLI Statisztikai kvetkezttetések elmélete [3] Typotex, 2005 [4] R. DURRETT Essentials of Stochastic Processes, Second edition Springer, 2012. Click here R. DURRETT Probability: Theory with examples, 4th edition Cambridge University Press, 2010. [5] [6] R. DURRETT Probability: Theory and Examples Click here S. KARLIN, H.M. TAYLOR A first course in stochastic processes Academic Press, New York, 1975 [7] S. KARLIN, H.M. TAYLOR Sztochasztikus Folyamatok Gondolat, Budapest, 1985 [8] S. KARLIN, H.M. TAYLOI [9] A second course in stochastic processes , Academic Press, 1981 [10] ${\rm P.}~{\rm MATTILA}$ Geometry of sets and measure in Euclidean spaces. Cambridge, 1995 Károly Simon (TU Budapest) Markov Processes & Martingales B File 67 / 68

Conditioning normals cont.

$$\mathbb{E}\left[e^{i\mathbf{t}\cdot\mathbf{X}}|\mathcal{G}\right] = e^{i\mathbf{t}\boldsymbol{\mu}_{X}}e^{i\mathbf{t}A\widetilde{\mathbf{Y}}}e^{-\frac{1}{2}\mathbf{t}^{T}\widehat{\boldsymbol{\Sigma}}\mathbf{t}} \text{ for } \mathbf{t} \in \mathbb{R}^{k},$$

where

$$\widehat{\boldsymbol{\Sigma}} = \mathbb{E}\left[(\mathbf{X} - A \widetilde{\mathbf{Y}}) (\mathbf{X} - A \widetilde{\mathbf{Y}})^T \right]$$

Then an easy calculation shows that conditionally, **X** given \mathcal{G} is multivariate normal $\mathcal{N}(\mu_{\mathbf{X}|\mathcal{G}}, \Sigma_{\mathbf{X}|\mathcal{G}})$ with mean and variance-covariance matrix:

$$\mu_{\mathbf{X}|\mathcal{G}} = \mu_Y + A(\mathbf{Y} - \mu_{\mathbf{Y}}) \text{ and } \Sigma_{\mathbf{X}|\mathcal{G}} = \Sigma_{\mathbf{X}\mathbf{X}} - \Sigma_{\mathbf{X}\mathbf{Y}}\Sigma_{YY}^{-1}\Sigma_{\mathbf{Y}\mathbf{X}}.$$

Kái	roly Simon (TU Budapest)	Markov Processes & Martingales	B File	66 / 68
[11]	S. I. RESNIK A probability Path Birkhäuser 2005			
[12]	D. WILLIAMS Probability with Martingales Cambridge 2005			
[13]	G. ZITKOVIC <i>Theory of Probabil</i> Click here	lty I, Lecture 7		
			-	/