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@ One way to compute conditional expectation
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Review of a simple situation

Let X, Y be r.v. on the probability space (2, F,P).
Assume they have joint density fx y(x,y) . Then to
compute E[X]|Y] as first we determine the marginal and
then the conditional densities

fX,Y(Xay)

fr(y) = 7 fx.v(x,y)dx and fx)y(x|y) == 0

Let g(y) :=E[X]Y =y] :j:)X - fxy(x|y)dx . Then

we get

(1) EX]Y]=g(Y).
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Independence Lemma

Lemma 1.1 (Independence Lemma)

Let X = (X1,...,Xk) and Y := (Y1,..., Ys), where
Xty s X, Y1,..., Yo arerv. on (Q,F,P). Let G C F
be a sub-c-algebra. We assume that

e Xi,...,.XxE€G

o Yi,..., Y, are independent of G.
Let ¢ be a bounded Borel function. Let f, : R¥ — R,

fo(x1, ... xk) = E[o(xa, ..., x, Y)]. Then
(2) E[¢(X, Y)IG] = f5(X).
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Independence Lemma (cont.)

The proof of the Lemma We follow the line of the
proof in Resnik’s book We present the main steps of the
proof here for the case k = ¢ = 1. It is a homework to
fill the gaps.

Step 1. Let K, L € R (that is K, L are Borel subsets of
R). Let ¢ := 1, where J = K x L. Then we say that J
is a measurable rectangle.

E[¢(X,Y)|G] =P(X € K, Y € L|G)

=1{X € K}P(Y € L|G)
—I{XeKIP(Yel)=f, (X).

Karoly Simon (TU Budapest)
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Independence Lemma (cont.)

Step 2. We write RECTS for the family of measurable
rectangles (like J above). Let

C:={JeR?:(2) holds for ¢ = 1,}.

Then RECTS C C. Now we verify that C is a A-system.
(To recall the definition, see the File "Some basic facts
from probability theory" Definition ??.) That is
(a) R? € C. This holds because R? € RECTS.
(b) J € C implies J¢ € C. This is so because

IP’((X, Y) S J‘-‘|g) =1 —]P((X, Y) S J|g)
1 £,(X) = i (X).
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Independence Lemma (cont.)

(c) If A, € C and A, are disjoint then L#A,, eC.
We do not prove (c) here. By definition, (a), (b) and (c)
implies that
e Cis a A-system and
e C D RECTS.

Using that RECTS is a 7-system it follows from File
"Some basic facts from probability theory" Theorem ?7
that

(3) C D ¢(RECTS) = R?.

Karoly Simon (TU Budapest)
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Independence Lemma (cont.)

So, we have indicated that (2) holds when ¢ is an
indicator function of Borel subsets of the plane.

Step 3. We could prove that (2) also holds when ¢ is a
simple function . We say that a Borel function ¢ is a
simple function if its range is finite. That is if there exist
a k and a partition Ji, ..., J of R?, J, € R and real

numbers ¢y, ..., ¢ such that
k

(4) ¢=> cly.
i=1

Karoly Simon (TU Budapest)
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Independence Lemma (cont.)

Step 4. Then we represent ¢ = ¢™ — ¢~ and we can find
sequences of simple functions {¢; } and {¢, } such that

¢y T 0" and ¢, 167

Then using Conditional Monotone Convergence Theorem
(see File "Some basic facts from probability theory" slide
#77) we conclude the proof. B
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Monotone Class Theorem

We could have used in the previous proof the so called
Monotone Class Theorem (for the proof see [6, p. 235])

Theorem 1.2 (Monotone Class Theorem)

Let A be a w-system with Q € A and let H be a family
of real valued function defined on Q) with the following
three properties:

(a) 14 € H whenever A € A.

(b) f,.g € H = f + g € H further, Vc € R :
c-feH
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Monotone Class Theorem cont.

Theorem 1.3 (Monotone Class Theorem cont)
(c) If f, € H satisfying
e f, >0 and
o fu1Tf
then f € H

The H contains all bounded functions measurable w.r.t.

o(A).

Karoly Simon (TU Budapest)

Markov Processes & Martingales B File 11 / 68

© Conditional probability in w.r.t. a o-algebra (simple
situation)

Karoly Simon (TU Budapest)
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Review

Given the probability space (2, F,P). Let G be a
sub-o-algebra of F and A € F. Acording to the
definition of the conditional probability w.r.t.
sub-o-algebra:

(5) P(A[G) = E[1Al9].

This is not a probability in the worst case but it is a
probability (for almost all w) under mild assumptions.
Our aim here is to get a better understanding of this
notion. We start with a very easy example from
Billingley's book.

Karoly Simon (TU Budapest)
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Review cont

Example 2.1

Consider a Poisson process N(t) ~ Poisson(A) which is,
say the number of telephone calls to a call center during
time interval [0, t].

(Remember: this means that the number of calls until
time to has distribution Poi(\ - t).) Fix 0 < s < t.
A:={N(s) =0} and B; := {N(t) =0}, i =0,1,2,....
Then {B;};2, is a partition of Q. So, it generates a
o-algebra which we call G .

Karoly Simon (TU Budapest)
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Review cont.

Example 2.2 (Example cont.)
It is immediate that

N(s) = 0) - P (N(t) — N(s) = i)

P(N(t) = i) |
-

™) P(N(s) =0ig) = (1~ 5)"

(6) P(AB) = =\

Then the random variable

Karoly Simon (TU Budapest)
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Review cont.

This is so, because we learned that in general

Lemma 2.3
Let Q1,$, ... be a partition of Q and let G C F be a
sub-c-algebra. Then
_EX Q] (v)
(8) E [X|G] (w) = W

If we apply Lemma 2.3 with X = 14:

(9) P (AG) (w) = P (A|Q) if w € Q.

Karoly Simon (TU Budapest)
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Review cont. (cont.)

Hence
P(AIQ) -P(Q)=P(ANQ))
This implies that the following assertions hold:
(i) B(AG) € 6.
(i) P(A|G) € L1(Q,G,P) and
(iil)

(10)
P(A|G)dP =P (AN G) for all G € G.
4

Review cont. (cont.)

(i)-(iii) above could serve as an alternative definition of
the conditional probability P (A|G).

The proof of the following theorem is immediate from
the properties of the conditional expectation.
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Review cont. (cont.) Review cont. (cont.)
Theorem 2.4 (Basic properties) Rk 2.5 [ [y 5 mebl)
Given (2, F,P) and let G be a sub-c-algebra of F. E[14|G] = P(A|G) is defined on Q4 C Q, P(Qa) = 1.
(a) P(0|G) =0 and P(Q|G) =1 a.s. So, for every A € F there is a set Zs of zero measure
(b) 0<P(AIG)<1as forall Ac F. where P (A|G) is not defined. In order to satisfy (11) we
let Ae A I disioi need to insure that for all countable collections
(c) Let A= ,,|;|1 n (recall: LI means disjoint simultaneously the exceptional set is still a set of zero
union) and A, € F then measure.
00 That is why we need to study this problem with more
(11) P(AlG) = EP(A,JQ) a.s. detail. But at the end everything will be alright, at least
in the "nice" cases.
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© Regular conditional Distribution
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R.C.D.

Given the probability space (€2, F,P) and the measurable
space (S,S). Let X : (2, F) — (S,S) be a measurable
map. In other words: X is an S-valued r.v.. Further, let
G be a sub-c-algebra of F.
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R.C.D. (cont.)

Definition 3.1 (Regular conditional Distribution)

We say that ;1 : Q x S — [0,1] is a
Regular conditional Distribution for X given G if
(a) For any fixed A € S the map w — p(w, A) is
a version of P (X € A|G).
(b) For almost every fixed w, p(w,e) is a
probability measure on (S, S).
If S=Q and X is the identity map X(w) = w then we
say that p is a regular conditional probability .

(TU Budapest) Markov Processes & Martingales B File

Karoly Simon

23 / 68

R.C.D. (cont.)

Example 3.2
Assume that (X, Y) has density f(x,y) > 0. Let

ly. A) = [ Flxy)e/ [ F(x.y)e

Then p(Y(w),A) is an r.c.d. for X given o(Y).
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R.C.D. (cont.)

Theorem 3.3

Let yi(w, A) be a r.c.d. for X given F and let
f:(5,8) = (R,R) be measurable. (This means that
f:S — R and for every Borel set B € R we have
f~Y(B) € S .) Further, we assume that

E[|f(X)|] <oo. Then

(12) E[f(X)|F] = [ £(x) - pw, o).

V.

We say that a space is nice if there is an injective map
¢ : S — R such that both ¢ and ™! are measurable.
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R.C.D. (cont.)

Theorem 3.4
Let S be a complete separable metric space and S be the
Borel sets on S. Then (S,S) is nice.

Theorem 3.5

Given a probability space (2, F,P) and let G be a
sub-c-algebra of F Further, let (S,S) be a measurable
space which is nice. Then any S-valued r.v. X admits a
regular conditional distribution given G.

The proof follows [13, Proposition 7.14].
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Proof of Theorem. 3.5 for § = R
First we assume that (S,S) = (R, R).
For a rational number g € Q we define the r.v.

Pi(w) =P (X < q|G) (w) .-

By throwing away countably many null sets we may
suppose that

(13) Pi(w) < P(w), Vg<r, greQandVw

and

0= lim P9(w),

lim Pi(w) =1, Vw.
g——00 q—0

Kroly Simon (TU Budapest)
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Proof of Theorem. 3.5 for S = R cont.
For an x € R let

14 F = i
(14) (w,x) seim_

Pi(w) .

Fix an arbitrary w. Then Vw the function x — F(w, x):
@ is right continuous,
@ non-decreasing,
o lim F(x)=0and lim F(x)=1.
Fix an arbitrary x. Then w — F(w, x) is r.v. that is
measurable (as an infimum of measurable functions).
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Proof of Theorem. 3.5 for S = R cont.

Combining the first comment on the previous slide with
Theorem ?? from File "Some basic facts form
probability" we obtain that for

(15) Vw, 3 a probability measure ix|g(w, ®).
satisfying

(16) pxg(w, (=00, x]) = F(w,x), Vw,Vx.

Karoly Simon (TU Budapest)
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Proof of Theorem. 3.5 for S = R cont.

Now we write £ for the family of all Borel sets B € R
satisfying the following two conditions:

(i) w— pxig(w,B)isaruv.
(ii) pxig(w, B) is a version of P (X € B|G) (w).
Now the strategy is as follows:
(cv) It is not hard to prove that £ is A-system (we
omit this proof).

(3) We prove that £ contains a m-system P such
that R = o(P).

Karoly Simon (TU Budapest)
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Proof of Theorem. 3.5 cont.

Assuming that («) and (/3) hold the proof of Theorem
3.5 is complete in the case of (S,S8) = (R, R). Namely,
using («) and (3), it follows from Theorem ?? from File
"Some basic facts form probability" that R C L. Part
(a) of Definition 3.1 will be verified by this. Part (b) is
immediate from (15).
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Proof of Theorem. 3.5 for S = R cont.

To complete part () on the previous slide: a convenient
m-system is

P = {(—o00,x] : x € R}.
(i) holds: muxg(w, B) = F(w, x) by definition and then
we use the second comment on slide #28.

(i) holds: We need to verify that

(17) F(w,x) =P (X < x|G) (w).

Recall that F was defined in (14).
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Proof of Theorem. 3.5 for S = R cont.
(17) follows from:

Flw,x) = (ilr;f Pi(w) = Iiin P(w)
X qlx
= IiinIP)(X < q|G) (w) = P(X < x|G) (w), for a.a. w.
qlx

In the last step we used the Dominated Convergence
Theorem. This verifies part () on # slide 30. Which
completes the proof of the Theorem in the case when
(5,8) =(R,R).
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Proof of Theorem. 3.5 in the general case
Now we turn to the general case when X is an S-valued
random variable:
X:Q—S.

Thatis X : (Q,F) — (S,S) is measurable. Using that
(S,S8) is a nice space, there exists an injective map
p: S — R such that both p and p~! are r.v.. Then the
composition

Y =poX:Q—>R
is also a r.v. for which we consider the corresponding
r.c.d.:

,uy|g(w., A) = ]P(Y € A|g) AeR.
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Proof of Theorem. 3.5 in the general case cont.
Now we can define the r.c.d for X:

pixig(w, B) == pyig(w, p(B))

Then it is not hard to prove that yxig(w, B) satisfies the
conditions (a) and (b) of Definition 3.1.
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Conditional Characteristic Function

Notation for the next slides:
e (Q, F,P) is the given probabiliyt space,
@ G is a sub-o-algebra of F,
e X:Q — R"is a given vector-valued r.v.,
@ jixig 1 2 x R" — [0,1] be the regular conditional
distribution of X given G.

Definition 3.6 (Regular conditional cdf)

F(w,x) = pxig (w,{y e R":y <, x}) x€R”
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Conditional Characteristic Function cont.

Definition 3.7
fxig : 2 x R" — [0, 00) is the conditional density
function of X given G if

@ x — fxjg(w, x) is Borel measurable,

® w i fxig(w,x) is G-measurable for every x € R”,

° éfX|g(w,x)dX = px|g(w, B) .
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Conditional Characteristic Function cont.

Definition 3.8 (Conditional characteristic

function)
The conditional characteristic function of X given G,
@X‘QZQXRH—)CiS

exig(w, t) = e"*duxg(w,dx), teR",

where t - x above means the scalar product of t and x.
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Conditional Characteristic Function cont.

Theorem 3.9

The following two assertions are equivalent
(a) The function

w = pxig(w, t)

is constant for P-almost all w. This constant
is denoted by ¢(t).
(b) o(X) is independent of G.

Proof of Theorem 3.9 (a)= (b)
By Theorem 3.3

oxig(w,t) = E[e"¥|G] (w) a.s..

here we assume that this is a constant (in w) denoted by
©(t). Multiply both sides with a r.v. Y which is bounded
(real-valued) and G-measurable, we get

o(t)-E[Y]=E[Ye*X]

For Y =1 we get ¢(t) = E [e™*|. Substitute this to the
previous equality to get

(18) E[Ye*X| =E[Y] E[e"]
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Proof of Theorem 3.9 (a)=- (b) cont
holds for all G-measurable bounded Y and t € R". So,

(18) holds for all r.v. Proof of Theorem 3.9 (a)=- (b) cont
oz On the other hand, this implies that X and G are
Y =e"7, independent since Z was an arbitrary G-measurable r.v.. )
where Z is any G-measurable R"-valued r.v. and s € R". Proof of Theorem 3.9 cont (b):> (a)
So from (18)
This is immediate from the "irrelevance of independent
E [eit~X+is-Z] ) [eitx] ‘E [eisz} . Vs, teR" information" property of the conditional expectation. )

Using this and the assertion of Homework # 7?7 we get
that X and Z are independent.
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The continuous case The continuous case cont.

Theorem 3.10

On the probability space (Q, F,IP) we are give a random Theorem 3.10 cont.
vector (19)
fz(x,Y (w . .
Z=(Xu..., X Ya,...,Y) = (X,Y). ) - e i (Y (w))dx > 0
X Y X\g(wv X) =\ Rk
fo(x), otherwise,

We assume that Z admits a density fz : R¥* — [0, 00).
Let G :=o(Y). where fy : R¥ — [0, 00) is an arbitrary density function.

Then there exists a conditional density
fxjg : R — [0,00) of X given G by the formula:

4
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The continuous case cont. The continuous case cont.
proof proof cont.
We have to check that for all A € R,
[ fxig(w, x)dpxg(w, x) E HYEB(M)'/fX‘g(W’X)dX
A A
=[E|l - £y d
is a version of P (X € A|G) (w). This follows if Z [Lves(w) - fglw, x)] dx
(20)
Observe that by definition of fxg(w,x) and change of
E |Tyep(w) - /fx‘g(w,X)dX = E[Lves(w) - Ixea(w)], variables formula:
A

holds for VA € R¥ and B € R’. We verify this: E [HYGB(w) xigw, X)} B “! fe(x, y)dy.

y
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The continuous case cont.

proof cont.
So,

E |lyep(w) - [ fg(w, x)dx
A

_ //fz(x,y)dydx 0 Review of Multivariate Normal Distribution
2 @ The bivariate Case
—P(XEAYcB)N @ Conditioning normal r.v. on their components

V.
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Definition 4.1 (Normal distribution (on R)) Some properties

Let © € R and o > 0. Random variable The r.v. X X ~ N(p,02) and X; ~ N (11, 02), i = 1,2. Then

has normal (or Gaussian) distribution with parameters (a) E[X] _ 11, Var(X) = o2. Y ’

(M,UQ), if its density function: (b) Fx(x) =P(X < x) = (ﬂ)

1  (x=)? (C) X1+ X = N(Ml + p2, 0% + U%)'
M =—7@ 7 (d) X ~ N(0,1), then
o \/2m (22)

Then we write X ~ A(u,0?). If =0 and o = 1, then L.(Xfl — X*3).e*X2/2 <P(X>x) < L.Xfl.efxzﬂ
we get the standard normal distribution A(0,1). Let V2 V2

us use the following notation: (e) Fix a p € (0,1). Let Y, ~ Bin(n, p), a < b, then

1 > 7

21 =——-e 2 Ox) = dy. i Yo—np_ — _

() B0 = 7 B ;L¢W)y (23) ﬁgﬁ«a<¢mt5<b> d(b) — (a).
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Multivariate normal distribution Multivariate normal distribution cont.
Dt 4.2 where A and g and ¥ satisfy:

} @ A is ad x d matrix which is

A random vector X € RY is non-degenerate @ symmetric and

multivariate normal or jointly Gaussian , if the density @ positive definit. Further,

function f(x) of X o p € R7is a fixed vector

det(A) The meaning of matrix A is as follows:
€ 1 T

24)  f(x) = L. e zlxm) T AGeR) RY, -

(24) () =gy e , X€RY (A7), = Cov(X:. X) = E[(X; — E[X]) - (X — E[X]].
or where X = (Xi,...,Xy). The d x d matrix £ = A~!
(25) with

f(x) — ; . ef%(xfﬂ)T'z_l‘(xfﬂ), X € R(ﬂ Z’J = COV(X,', )<J)

(2m)9 - det(X) ’ _ . - :
/ is called covariance matrix . We write X ~ N (g, X)
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Multivariate normal distribution cont. Multivariate normal distribution cont.
Definition 4.3 IL_ethm; a5 . =

Let X be as above. Let \;,..., Ay be the eigenvalues of € € as above. fhen

A, and vy, ..., vg be the ortonormal basis of RY with the (26) X=P.-DYV2.(Yy,....Yy)+n

appropriate eigenvectors. Let us define diagonal matrix
where Y; ~ N(0,1),i = 1,...,d and they are
independent. In this case we call Y standard multivariate
normal vector.

D := diag(\1, ..., \g).

We define the orthogonal d x d matrix
i = [ Vi Vo ... Vg } from the eigenvectors v, ..., vy That is the random vector Y is presented as the affine
as column vectors. ) transform of independent standard normal r.v.. See [I,
chapters 6 and 7].
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Converse of the previous lemma An equivalent definition
Lemma 4.5 Lemma 4.6
Let Y be a standard multivariate normal vector in R". The random vector X = (Xi,...,X,) € R" has a
Let B be a non-singular d x d matrix and u € R". Let multivariate normal distribution if for all

a=(ay,...,an) € R" the following holds:
X=B-Y+u
a1 X1+ - -+ a,X, has univariate normal distribution.

Then X ~ N(p, A- AT).
en (e ) The proof are available in [3]
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The bivariate Case

Assume that Z = (X, Y) has a bivariate normal
distribution. Let

Hx, Ly, Ox, Oy

be the expectation and standard deviation of X and Y
respectively. Further, recall the definitions of covariance
and correlation:

cov(X,Y) = E[(X — pux)(Y — uy)]
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The bivariate Case cont.

The correlation of (X, Y) is:

cov(X,Y)
(27) p:=pxy =corr(X,Y) = 2(X)o(Y)

_ E[(X = p)[(Y — pv)]
a(X)a(Y)

The mean vector and the variance-covariance matrix is:

1 and X = Oi PIXTY
Hy

2
POXOyY Oy

pi=
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The bivariate Case cont.

Let
Q(x,y) =
1 — 1x)? — 1y)? — I —
; (x éIX) +(y 2/1Y) _2p(X 1x)(y — py)
1—0p 0% oy A%

So, the density is

1 1
f S S—— - .
z(x.¥) 27T0'X0'Y\/1_7p2 &P < 2 Q. y)>

Karoly Simon (TU Budapest)
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The bivariate Case cont.

Consider the marginal densities:

)2

1 Geny)? 2w
fx : -e 22 and fy = 27y

1
= —— e
ox 2T oy V2T

Observe that whenever X and Y are uncorrelated, that is
p = 0 then

fz = fx - fy.

This means that X and Y are independent. In a similar
way one can prove the same in higher dimension:

Karoly Simon (TU Budapest)
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Uncorrelated = independent for Gussian

Theorem 4.7

Let X = (Xi,...,X,) be multivariate normal vector.
Assume that Cov(X;, X;) =0 for all i # j. Then
Xi,...,X, are independent.

Karoly Simon (TU Budapest)
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Multivariate normal distribution cont.

A more general theorem in this direction is:

Theorem 4.8

Let X = (Xi,...,X,) be random vector such that the
marginal distributions (the distributions of the
component vectors X; ) are

@ normal and
@ independent

Then X has a multivariate normal distribution.
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CF and MGF

Theorem 4.9
Let X ~ N(p,X). Then The characteristic function is
(28) ¢x(t) :==E [exp(itT . X)]

= exp (i,uTt — %tTZt)
The moment generating function is
(29) Mx(t) :=E [exp(t” - X)]

= exp (ip” -t —3tT5t).

v
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Conditioning normals
Given the multivariate normal vector

Z=(Xu..., X, Y, ..
X Y

LY = (X,Y).

with mean g and variance-covariance matrix >_:

Yxx Xxy
Yyx Xyy

?

| M1 - 7. 7T] _
/,L—LQ},Z—E[Z yAl

whereZ:=Z —pand for X =X —px, Y =Y — py
Sxx = E[X - XT]
Tyx =E[Y-XT]

Txy =E[X-YT]
Sy =E[Y Y]
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Conditioning normals cont. Conditioning normals cont.

We may assume that Xyy is invertible. (Why?) Then for
A= Y xy - Lyv we have (simply by definitions) that - -
N L E [eit~X|g} _ eit,uxeitAYe—%tT)it fort € Rk,
(30) E[(X—AY)-YT| =o0.

where B B B
By Theorem 4.7 this implies that X — AY and Y are Y =E [(X —AY)(X — AY)T] .
independent. By Theorem 3.9 we have that the
characteristic function of X — AY given G = o(Y) is
deterministic and is equal to (for every w):

o3 ao(t) =E [eft@*”ng} . VteRK

Then an easy calculation shows that conditionally, X
given G is multivariate normal N(ux‘g,zx‘g) with mean
and variance-covariance matrix:

Hx|g = Py +A(Y —p,y) and Zx‘g =2xx — ZXYZ;\I/):YX'

Since AY is G-measurable, we can pull out what is
known and use (4.9):
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