
Markov Processes and Martingales

Károly Simon

Department of Stochastics
Institute of Mathematics

Technical University of Budapest
www.math.bme.hu/~simonk

B File
Interlude: how to compute the conditional

expectation?

Károly Simon (TU Budapest) Markov Processes & Martingales B File 1 / 68

1 One way to compute conditional expectation

2 Conditional probability in w.r.t. a σ-algebra (simple
situation)

3 Regular conditional Distribution

4 Review of Multivariate Normal Distribution
The bivariate Case
Conditioning normal r.v. on their components

Károly Simon (TU Budapest) Markov Processes & Martingales B File 2 / 68

Review of a simple situation

Let X , Y be r.v. on the probability space (Ω, F ,P).

Assume they have joint density fX ,Y (x , y) . Then to

compute E [X |Y ] as first we determine the marginal and
then the conditional densities

fY (y) :=
∞∫

−∞
fX ,Y (x , y)dx and fX |Y (x |y) := fX ,Y (x , y)

fY (y)
.

Let g(y) := E [X |Y = y ] =
∞∫

−∞
x · fX |Y (x |y)dx . Then

we get

(1) E [X |Y ] = g(Y ) .
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Independence Lemma

Lemma 1.1 (Independence Lemma)

Let X = (X1, . . . , Xk) and Y := (Y1, . . . , Yℓ), where
X1, . . . , Xk , Y1, . . . , Yℓ are r.v. on (Ω, F ,P). Let G ⊂ F
be a sub-σ-algebra. We assume that

X1, . . . , Xk ∈ G
Y1, . . . , Yℓ are independent of G.

Let φ be a bounded Borel function. Let fφ : R
k → R,

fφ(x1, . . . , xk) := E [φ(x1, . . . , xk , Y)] . Then

(2) E [φ(X, Y)|G] = fφ(X).
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Independence Lemma (cont.)

The proof of the Lemma We follow the line of the
proof in Resnik’s book We present the main steps of the
proof here for the case k = ℓ = 1. It is a homework to
fill the gaps.
Step 1. Let K , L ∈ R (that is K , L are Borel subsets of
R). Let φ := ✶J where J = K × L. Then we say that J
is a measurable rectangle.

E [φ(X, Y)|G] = P (X ∈ K , Y ∈ L|G)
= ✶{X ∈ K}P (Y ∈ L|G)
= ✶{X ∈ K}P (Y ∈ L) = f

✶K×L
(X ) .
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Independence Lemma (cont.)
Step 2. We write RECTS for the family of measurable
rectangles (like J above). Let

C :=
{
J ∈ R2 : (2) holds for φ = ✶J

}
.

Then RECTS ⊂ C. Now we verify that C is a λ-system.
(To recall the definition, see the File "Some basic facts
from probability theory" Definition ??.) That is

(a) R2 ∈ C. This holds because R2 ∈ RECTS.

(b) J ∈ C implies J c ∈ C. This is so because

P ((X , Y ) ∈ J c |G) = 1− P ((X , Y ) ∈ J |G)
1− f

✶J
(X ) = f

✶Jc (X ).
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Independence Lemma (cont.)

(c) If An ∈ C and An are disjoint then
⋃
n

An ∈ C.
We do not prove (c) here. By definition, (a), (b) and (c)
implies that

C is a λ-system and

C ⊃ RECTS.

Using that RECTS is a π-system it follows from File
"Some basic facts from probability theory" Theorem ??
that

(3) C ⊃ σ(RECTS) = R2.
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Independence Lemma (cont.)

So, we have indicated that (2) holds when φ is an
indicator function of Borel subsets of the plane.
Step 3. We could prove that (2) also holds when φ is a
simple function . We say that a Borel function φ is a
simple function if its range is finite. That is if there exist
a k and a partition J1, . . . , Jk of R

2, Jk ∈ R and real
numbers c1, . . . , ck such that

(4) φ =
k∑

i=1

ci✶Ji
.
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Independence Lemma (cont.)

Step 4. Then we represent φ = φ+ − φ− and we can find
sequences of simple functions {φ+

n } and {φ−
n } such that

φ+
n ↑ φ+ and φ−

n ↑ φ−.

Then using Conditional Monotone Convergence Theorem
(see File "Some basic facts from probability theory" slide
#??) we conclude the proof. �
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Monotone Class Theorem

We could have used in the previous proof the so called
Monotone Class Theorem (for the proof see [6, p. 235])

Theorem 1.2 (Monotone Class Theorem)

Let A be a π-system with Ω ∈ A and let H be a family
of real valued function defined on Ω with the following
three properties:

(a) ✶A ∈ H whenever A ∈ A.

(b) f , g ∈ H =⇒ f + g ∈ H further, ∀c ∈ R :
c · f ∈ H
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Monotone Class Theorem cont.

Theorem 1.3 (Monotone Class Theorem cont)

(c) If fn ∈ H satisfying

fn ≥ 0 and
fn ↑ f

then f ∈ H
The H contains all bounded functions measurable w.r.t.
σ(A).
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Review

Given the probability space (Ω, F ,P). Let G be a
sub-σ-algebra of F and A ∈ F . Acording to the
definition of the conditional probability w.r.t.
sub-σ-algebra:

(5) P (A|G) := E [✶A|G] .

This is not a probability in the worst case but it is a
probability (for almost all ω) under mild assumptions.
Our aim here is to get a better understanding of this
notion. We start with a very easy example from
Billingley’s book.
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Review cont

Example 2.1

Consider a Poisson process N(t) ∼ Poisson(λ) which is,
say the number of telephone calls to a call center during
time interval [0, t].
(Remember: this means that the number of calls until
time t0 has distribution Poi(λ · t0).) Fix 0 < s < t.
A := {N(s) = 0} and Bi := {N(t) = 0}, i = 0, 1, 2, . . . .
Then {Bi}∞

i=0
is a partition of Ω. So, it generates a

σ-algebra which we call G .
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Review cont.

Example 2.2 (Example cont.)
It is immediate that

(6) P (A|Bi) =
P (N(s) = 0) · P (N(t)− N(s) = i)

P (N(t) = i)

=

(
1− s

t

)i

.

Then the random variable

(7) P (N(s) = 0|G) =
(
1− s

t

)N(t)
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Review cont.

This is so, because we learned that in general

Lemma 2.3

Let Ω1,Ω2, . . . be a partition of Ω and let G ⊂ F be a
sub-σ-algebra. Then

(8) E [X |G] (ω) = E [X ; Ωi ] (ω)

P (Ωi)

If we apply Lemma 2.3 with X = ✶A:

(9) P (A|G) (ω) = P (A|Ωi) if ω ∈ Ωi .
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Review cont. (cont.)

Hence
P (A|Ωi) · P (Ωi) = P (A ∩ Ωi)

This implies that the following assertions hold:

(i) P (A|G) ∈ G.
(ii) P (A|G) ∈ L1(Ω, G,P) and

(iii)
(10)∫

G

P (A|G) dP = P (A ∩ G) for all G ∈ G.
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Review cont. (cont.)

(i)-(iii) above could serve as an alternative definition of
the conditional probability P (A|G).
The proof of the following theorem is immediate from
the properties of the conditional expectation.
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Review cont. (cont.)

Theorem 2.4 (Basic properties)

Given (Ω, F ,P) and let G be a sub-σ-algebra of F .

(a) P (∅|G) = 0 and P (Ω|G) = 1 a.s.

(b) 0 ≤ P (A|G) ≤ 1 a.s. for all A ∈ F .

(c) Let A =
∞⊔

n=1

An (recall:
⊔

means disjoint

union) and An ∈ F then

(11) P (A|G) =
∞∑

n=1

P (An|G) a.s.
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Review cont. (cont.)

Remark 2.5 (We have a problem)

E [✶A|G] = P (A|G) is defined on ΩA ⊂ Ω, P (ΩA) = 1.
So, for every A ∈ F there is a set ZA of zero measure
where P (A|G) is not defined. In order to satisfy (11) we
need to insure that for all countable collections
simultaneously the exceptional set is still a set of zero
measure.

That is why we need to study this problem with more
detail. But at the end everything will be alright, at least
in the "nice" cases.
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R.C.D.

Given the probability space (Ω, F ,P) and the measurable
space (S, S). Let X : (Ω, F) → (S, S) be a measurable
map. In other words: X is an S-valued r.v.. Further, let
G be a sub-σ-algebra of F .
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R.C.D. (cont.)

Definition 3.1 (Regular conditional Distribution)

We say that µ : Ω× S → [0, 1] is a
Regular conditional Distribution for X given G if

(a) For any fixed A ∈ S the map ω Ô→ µ(ω, A) is
a version of P (X ∈ A|G).

(b) For almost every fixed ω, µ(ω, •) is a
probability measure on (S, S).

If S = Ω and X is the identity map X (ω) = ω then we
say that µ is a regular conditional probability .
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R.C.D. (cont.)

Example 3.2

Assume that (X , Y ) has density f (x , y) > 0. Let

µ(y , A) :=
∫

A

f (x , y)dx/
∞∫

−∞
f (x , y)dx .

Then µ(Y (ω), A) is an r.c.d. for X given σ(Y ).
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R.C.D. (cont.)

Theorem 3.3

Let µ(ω, A) be a r.c.d. for X given F and let
f : (S, S) → (R, R) be measurable. (This means that
f : S → R and for every Borel set B ∈ R we have
f −1(B) ∈ S .) Further, we assume that

E [|f (X )|] < ∞ . Then

(12) E [f (X )|F ] =
∫

f (x) · µ(ω, dx).

We say that a space is nice if there is an injective map
ϕ : S → R such that both ϕ and ϕ−1 are measurable.
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R.C.D. (cont.)

Theorem 3.4
Let S be a complete separable metric space and S be the
Borel sets on S. Then (S, S) is nice.

Theorem 3.5

Given a probability space (Ω, F ,P) and let G be a
sub-σ-algebra of F Further, let (S, S) be a measurable
space which is nice. Then any S-valued r.v. X admits a
regular conditional distribution given G.

The proof follows [13, Proposition 7.14].
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Proof of Theorem. 3.5 for S = R
First we assume that (S, S) = (R, R).
For a rational number q ∈ Q we define the r.v.

Pq(ω) := P (X ≤ q|G) (ω) .

By throwing away countably many null sets we may
suppose that

(13) Pq(ω) ≤ P r(ω), ∀q ≤ r , q, r ∈ Q and ∀ω

and

0 = lim
q→−∞ Pq(ω), lim

q→∞ Pq(ω) = 1, ∀ω.
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Proof of Theorem. 3.5 for S = R cont.
For an x ∈ R let

(14) F (ω, x) := lim
q∈Q,q>x

Pq(ω) .

Fix an arbitrary ω. Then ∀ω the function x Ô→ F (ω, x):

is right continuous,

non-decreasing,

lim
x→−∞ F (x) = 0 and lim

x→∞ F (x) = 1.

Fix an arbitrary x . Then ω Ô→ F (ω, x) is r.v. that is
measurable (as an infimum of measurable functions).
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Proof of Theorem. 3.5 for S = R cont.
Combining the first comment on the previous slide with
Theorem ?? from File "Some basic facts form
probability" we obtain that for

(15) ∀ω, ∃ a probability measure µX |G(ω, •).

satisfying

(16) µX |G(ω, (−∞, x ]) = F (ω, x) , ∀ω, ∀x .
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Proof of Theorem. 3.5 for S = R cont.
Now we write L for the family of all Borel sets B ∈ R
satisfying the following two conditions:

(i) ω Ô→ µX |G(ω, B) is a r.v..

(ii) µX |G(ω, B) is a version of P (X ∈ B|G) (ω).
Now the strategy is as follows:

(α) It is not hard to prove that L is λ-system (we
omit this proof).

(β) We prove that L contains a π-system P such
that R = σ(P).
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Proof of Theorem. 3.5 cont.
Assuming that (α) and (β) hold the proof of Theorem
3.5 is complete in the case of (S, S) = (R, R). Namely,
using (α) and (β), it follows from Theorem ?? from File
"Some basic facts form probability" that R ⊂ L. Part
(a) of Definition 3.1 will be verified by this. Part (b) is
immediate from (15).
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Proof of Theorem. 3.5 for S = R cont.
To complete part (α) on the previous slide: a convenient
π-system is

P := {(−∞, x ] : x ∈ R} .

(i) holds: muX |G(ω, B) = F (ω, x) by definition and then
we use the second comment on slide #28.
(ii) holds: We need to verify that

(17) F (ω, x) = P (X ≤ x |G) (ω).

Recall that F was defined in (14).
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Proof of Theorem. 3.5 for S = R cont.
(17) follows from:

F (ω, x) = inf
q>x

Pq(ω) = lim
q↓x

Pq(ω)

= lim
q↓x

P (X ≤ q|G) (ω) = P (X ≤ x |G) (ω) , for a.a. ω.

In the last step we used the Dominated Convergence
Theorem. This verifies part (β) on # slide 30. Which
completes the proof of the Theorem in the case when
(S, S) = (R, R).
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Proof of Theorem. 3.5 in the general case
Now we turn to the general case when X is an S-valued
random variable:

X : Ω → S.

That is X : (Ω, F) → (S, S) is measurable. Using that
(S, S) is a nice space, there exists an injective map
ρ : S → R such that both ρ and ρ−1 are r.v.. Then the
composition

Y := ρ ◦ X : Ω → R

is also a r.v. for which we consider the corresponding
r.c.d.:

µY |G(ω, A) := P (Y ∈ A|G) , A ∈ R.
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Proof of Theorem. 3.5 in the general case cont.
Now we can define the r.c.d for X :

µX |G(ω, B) := µY |G(ω, ρ(B)) .

Then it is not hard to prove that µX |G(ω, B) satisfies the
conditions (a) and (b) of Definition 3.1.
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Conditional Characteristic Function

Notation for the next slides:

(Ω, F ,P) is the given probabiliyt space,

G is a sub-σ-algebra of F ,
X : Ω → Rn is a given vector-valued r.v.,

µX |G : Ω× Rn → [0, 1] be the regular conditional
distribution of X given G.

Definition 3.6 (Regular conditional cdf)

F (ω, x) := µX|G (ω, {y ∈ Rn : y ≤n x}) x ∈ Rn
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Conditional Characteristic Function cont.

Definition 3.7
fX|G : Ω× Rn → [0, ∞) is the conditional density
function of X given G if

x Ô→ fX|G(ω, x) is Borel measurable,

ω Ô→ fX|G(ω, x) is G-measurable for every x ∈ Rn,
∫

B
fX|G(ω,x)dx = µX|G(ω, B) .
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Conditional Characteristic Function cont.

Definition 3.8 (Conditional characteristic

function)
The conditional characteristic function of X given G,
ϕX |G : Ω× Rn → C is

ϕX |G(ω, t) :=
∫

Rn
eit·xdµX|G(ω, dx), t ∈ Rn ,

where t · x above means the scalar product of t and x.
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Conditional Characteristic Function cont.

Theorem 3.9

The following two assertions are equivalent

(a) The function

ω Ô→ ϕX |G(ω, t)

is constant for P-almost all ω. This constant
is denoted by ϕ(t).

(b) σ(X) is independent of G.
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Proof of Theorem 3.9 (a)⇒ (b)
By Theorem 3.3

ϕX|G(ω, t) = E
[
eit·X|G

]
(ω) a.s..

here we assume that this is a constant (in ω) denoted by
ϕ(t). Multiply both sides with a r.v. Y which is bounded
(real-valued) and G-measurable, we get

ϕ(t) · E [Y ] = E
[
Y eit·X.

]

For Y = 1 we get ϕ(t) = E
[
eit·X

]
. Substitute this to the

previous equality to get

(18) E
[
Y eit·X

]
= E [Y ] · E

[
eitX

]
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Proof of Theorem 3.9 (a)⇒ (b) cont
holds for all G-measurable bounded Y and t ∈ Rn. So,
(18) holds for all r.v.

Y = eis·Z ,

where Z is any G-measurable Rn-valued r.v. and s ∈ Rn.
So from (18)

E
[
eit·X+is·Z]

= E
[
eitX

]
· E

[
eisZ

]
, ∀s, t ∈ Rn.

Using this and the assertion of Homework # ?? we get
that X and Z are independent.
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Proof of Theorem 3.9 (a)⇒ (b) cont
On the other hand, this implies that X and G are
independent since Z was an arbitrary G-measurable r.v..

Proof of Theorem 3.9 cont (b)⇒ (a)
This is immediate from the "irrelevance of independent
information" property of the conditional expectation.
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The continuous case

Theorem 3.10

On the probability space (Ω, F ,P) we are give a random
vector

Z = (X1, . . . , Xk︸ ︷︷ ︸
X

, Y1, . . . , Yℓ︸ ︷︷ ︸
Y

) = (X, Y).

We assume that Z admits a density fZ : R
k+ℓ → [0, ∞).

Let G := σ(Y).
Then there exists a conditional density
fX|G : R

k → [0, ∞) of X given G by the formula:
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The continuous case cont.

Theorem 3.10 cont.

(19)

fX|G(ω, x) =





fZ(x,Y(ω))∫

Rk

fZ(x,Y(ω))dx
, if

∫

Rℓ

f (x, Y(ω))dx > 0;

f0(x), otherwise,

where f0 : R
k → [0, ∞) is an arbitrary density function.
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The continuous case cont.

proof

We have to check that for all A ∈ Rk ,

∫

A
fX|G(ω, x)dµX|G(ω, x)

is a version of P (X ∈ A|G) (ω). This follows if
(20)

E



✶Y∈B(ω) ·

∫

A

fX|G(ω, x)dx


 = E [✶Y∈B(ω) · ✶X∈A(ω)] ,

holds for ∀A ∈ Rk and B ∈ Rℓ. We verify this:
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The continuous case cont.

proof cont.

E



✶Y∈B(ω) ·

∫

A

fX|G(ω, x)dx




=
∫

A

E
[
✶Y∈B(ω) · fX|G(ω, x)

]
dx

Observe that by definition of fX|G(ω, x) and change of
variables formula:

E
[
✶Y∈B(ω) · fX|G(ω, x)

]
=

∫

B

fZ(x , y)dy.
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The continuous case cont.

proof cont.
So,

E



✶Y∈B(ω) ·

∫

A

fX|G(ω, x)dx




=
∫

A

∫

B

fZ(x , y)dydx

= P (X ∈ A;Y ∈ B.)�
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Definition 4.1 (Normal distribution (on R))
Let µ ∈ R and σ > 0. Random variable The r.v. X
has normal (or Gaussian) distribution with parameters
(µ, σ2), if its density function:

f (x) =
1

σ ·
√
2π

· e− (x−µ)2

2σ2 .

Then we write X ∼ N (µ, σ2). If µ = 0 and σ = 1, then
we get the standard normal distribution N (0, 1). Let
us use the following notation:

(21) ϕ(x) :=
1√
2π

· e−x2/2, Φ(x) :=
x∫

−∞
ϕ(y)dy .
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Some properties

X ∼ N (µ, σ2) and Xi ∼ N (µi , σ2

i ), i = 1, 2. Then
(a) E [X ] = µ, Var(X ) = σ2.
(b) FX (x) = P (X ≤ x) = Φ

(
x−µ

σ

)
.

(c) X1 + X2 = N (µ1 + µ2, σ2

1
+ σ2

2
).

(d) X ∼ N (0, 1), then
(22)
1√
2π

·
(
x−1 − x−3

)
·e−x2/2 ≤ P

(
X ≥ x

)
≤ 1√

2π
·x−1 ·e−x2/2

(e) Fix a p ∈ (0, 1). Let Yn ∼ Bin(n, p), a < b, then

(23) lim
n→∞P

(
a < Yn−np√

np(1−p)
< b

)
= Φ(b)− Φ(a) .
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Multivariate normal distribution

Definition 4.2

A random vector X ∈ Rd is non-degenerate
multivariate normal or jointly Gaussian , if the density
function f (x) of X

(24) f (x) =

√
det(A)

(2π)d/2
· e− 1

2 (x−µµµ)T ·A·(x−µµµ), x ∈ Rd ,

or
(25)

f (x) =
1

√
(2π)d · det(Σ)

· e− 1
2 (x−µµµ)T ·Σ−1·(x−µµµ), x ∈ Rd ,
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Multivariate normal distribution cont.

where A and µµµ and Σ satisfy:

A is a d × d matrix which is
1 symmetric and
2 positive definit. Further,

µµµ ∈ Rd is a fixed vector

The meaning of matrix A is as follows:
(
A−1

)
ij
= Cov(Xi , Xj) = E [(Xi − E [Xi ]) · (Xj − E [Xj ]] ,

where X = (X1, . . . , Xd). The d × d matrix Σ = A−1

with
Σij := Cov(Xi , Xj)

is called covariance matrix . We write X ∼ N (µµµ,Σ)
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Multivariate normal distribution cont.

Definition 4.3
Let X be as above. Let λ1, . . . , λd be the eigenvalues of
A, and v1, . . . , vd be the ortonormal basis of R

d with the
appropriate eigenvectors. Let us define diagonal matrix

D := diag(λ1, . . . , λd).

We define the orthogonal d × d matrix
P =

[
v1 v2 . . . vd

]
from the eigenvectors v1, . . . , vd

as column vectors.
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Multivariate normal distribution cont.

Lemma 4.4
Let X be as above. Then

(26) X = P · D−1/2 · (Y1, . . . , Yd) + µµµ,

where Yi ∼ N (0, 1), i = 1, . . . , d and they are
independent. In this case we call Y standard multivariate
normal vector.

That is the random vector Y is presented as the affine
transform of independent standard normal r.v.. See [1,
chapters 6 and 7].
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Converse of the previous lemma

Lemma 4.5
Let Y be a standard multivariate normal vector in Rn.
Let B be a non-singular d × d matrix and µµµ ∈ Rn. Let

X := B · Y+ µµµ

Then X ∼ N (µµµ, A · AT ).
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An equivalent definition

Lemma 4.6
The random vector X = (X1, . . . , Xn) ∈ Rn has a
multivariate normal distribution if for all
a = (a1, . . . , an) ∈ Rn the following holds:

a1X1 + · · ·+ anXn has univariate normal distribution.

The proof are available in [3]
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The bivariate Case

Assume that Z = (X , Y ) has a bivariate normal
distribution. Let

µx , µY , σX , σY

be the expectation and standard deviation of X and Y
respectively. Further, recall the definitions of covariance
and correlation:

cov(X , Y ) := E [(X − µX )(Y − µY )]
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The bivariate Case cont.

The correlation of (X , Y ) is:

(27) ρ := ρX ,Y := corr(X , Y ) =
cov(X , Y )

σ(X )σ(Y )

=
E [(X − µX )[(Y − µY )]

σ(X )σ(Y )

The mean vector and the variance-covariance matrix is:

µµµ :=


 µX

µY


 and Σ =


 σ2

X ρσXσY

ρσXσY σ2

Y


 .
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The bivariate Case cont.

Let

Q(x , y) :=

1

1− ρ2


(x − µX )

2

σ2
X

+
(y − µY )

2

σ2
Y

− 2ρ(x − µX )(y − µY )

σXσY




So, the density is

fZ(x , y) =
1

2πσXσY

√
1− ρ2

exp

(
−1
2

Q(x , y)

)
.
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The bivariate Case cont.

Consider the marginal densities:

fX :=
1

σX ·
√
2π

· e−
(x−µX )2

2σ2 and fY :=
1

σY ·
√
2π

· e−
(y−µY )2

2σ2
Y .

Observe that whenever X and Y are uncorrelated, that is
ρ = 0 then

fZ = fX · fY .

This means that X and Y are independent. In a similar
way one can prove the same in higher dimension:
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Uncorrelated ⇒ independent for Gussian

Theorem 4.7

Let X = (X1, . . . , Xn) be multivariate normal vector.
Assume that Cov(Xi , Xj) = 0 for all i Ó= j . Then
X1, . . . , Xn are independent.
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Multivariate normal distribution cont.

A more general theorem in this direction is:

Theorem 4.8
Let X = (X1, . . . , Xn) be random vector such that the
marginal distributions (the distributions of the
component vectors Xi ) are

normal and

independent

Then X has a multivariate normal distribution.
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CF and MGF

Theorem 4.9

Let X ∼ N (µµµ,Σ). Then The characteristic function is

(28) ϕX(t) := E
[
exp(itT · X)

]

= exp
(
iµµµT t − 1

2
tTΣt

)

The moment generating function is

(29) MX(t) := E
[
exp(tT · X)

]

= exp
(
iµµµT · t − 1

2
tTΣt

)
.
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Conditioning normals

Given the multivariate normal vector

Z = (X1, . . . , Xk︸ ︷︷ ︸
X

, Y1, . . . , Yℓ︸ ︷︷ ︸
Y

) = (X, Y).

with mean µµµ and variance-covariance matrix Σ:

µµµ =


 µ1

µ2


 ,Σ = E

[
Z̃ · Z̃T

]
=


 ΣXX ΣXY

ΣYX ΣYY


,

where Z̃ := Z − µµµ and for X̃ := X − µµµX , Ỹ := Y − µµµY

ΣXX = E
[
X̃ · X̃T

]
ΣXY = E

[
X̃ · ỸT

]

ΣYX = E
[
Ỹ · X̃T

]
ΣYY = E

[
Ỹ · ỸT

]
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Conditioning normals cont.

We may assume that ΣYY is invertible. (Why?) Then for
A := ΣXY · Σ−1

YY we have (simply by definitions) that

(30) E
[(

X̃ − AỸ
)

· ỸT
]
= 0.

By Theorem 4.7 this implies that X̃ − AỸ and Ỹ are
independent. By Theorem 3.9 we have that the
characteristic function of X̃ − AỸ given G = σ(Y ) is
deterministic and is equal to (for every ω):

ϕX̃−AỸ(t) = E
[
eit(X̃−AỸ)|G

]
, ∀t ∈ Rk .

Since AỸ is G-measurable, we can pull out what is
known and use (4.9):
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Conditioning normals cont.

E
[
eit·X|G

]
= eitµµµXeitAỸe−

1
2 tT Σ̂t for t ∈ Rk ,

where
Σ̂ = E

[
(X − AỸ)(X − AỸ)T

]
.

Then an easy calculation shows that conditionally, X
given G is multivariate normal N

(
µµµX|G,ΣX|G

)
with mean

and variance-covariance matrix:

µµµX|G = µµµY +A(Y−µµµY) and ΣX|G = ΣXX −ΣXYΣ
−1

YYΣYX.

Károly Simon (TU Budapest) Markov Processes & Martingales B File 66 / 68

[1] Mŕton Balázs,Bálint Tóth
Lecture notes: Introductory probability (in Hungarian)
Click here.

[2] P. Billingsley
Probability and measure
Wiley, 1995

[3] M. Bolla, A. Kámli
Statisztikai kv̈etkezttetések elmélete
Typotex, 2005

[4] R. Durrett
Essentials of Stochastic Processes, Second edition
Springer, 2012. Click here

[5] R. Durrett
Probability: Theory with examples, 4th edition
Cambridge University Press, 2010.

[6] R. Durrett
Probability: Theory and Examples
Click here

[7] S. Karlin, H.M. Taylor
A first course in stochastic processes
Academic Press, New York, 1975

[8] S. Karlin, H.M. Taylor
Sztochasztikus Folyamatok
Gondolat, Budapest, 1985

[9] S. Karlin, H.M. Taylor
A second course in stochastic processes
, Academic Press, 1981

[10] P. Mattila Geometry of sets and measure in Euclidean spaces. Cambridge, 1995.

Károly Simon (TU Budapest) Markov Processes & Martingales B File 67 / 68

[11] S. I. Resnik
A probability Path
Birkhäuser 2005

[12] D. Williams
Probability with Martingales
Cambridge 2005

[13] G. Zitkovic Theory of Probabilty I, Lecture 7
Click here

Károly Simon (TU Budapest) Markov Processes & Martingales B File 68 / 68


